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ABSTRACT 

 

The object of the present paper is to introduce the notion of generalised almost statistical (GAS) convergence of 

bounded real sequences, which generalises the notion of almost convergence as well as statistical convergence 

of bounded real sequences. We also introduce the concept of Banach statistical limit functional and the notion 

of GAS convergence mainly depends on the existence of Banach statistical limit functional. We prove the 

existence of Banach statistical limit functional. Also, the existence GAS convergent sequence, which is neither 

statistical convergent nor almost convergent. Lastly, some topological properties of the space of all GAS 

convergent sequences are investigated. 
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I. INTRODUCTION & PRELIMINARIES 

 

A sequence (𝜉𝑛)  of real number is said to be 

convergent to a real number 𝑙  if for 𝜖 > 0 ∃ 𝑛0 ∈ ℕ 

such that |𝜉𝑘 − 𝑙| < 𝜖 ∀ 𝑘 > 𝑛0 . There are several 

generalizations of usual convergence, viz. almost 

convergence (see [13], [4]), statistical convergence 

(see [5], [7]) etc. Nevertheless, it is always better to 

have larger set of convergent sequence in more 

generalized sense under investigation. 

 

The existence of Banach limit functionals was proven 

by Banach (see [13]) in 1932. Using Banach limits, in 

1948, Lorentz (see [4]) introduced the notion of 

almost convergence, which is a generalization of 

usual convergence of real sequences. Again in 1951 

Fast (see [5]) and Steinhaus (see [7]) introduced 

independently the notion of statistical convergence 

by rigorous use of natural density of subsets of ℕ, 

which is another generalization of usual convergence. 

Salat (see [15]), Fridy (see [1], [9]), Miller (see [6]) and 

many others (see [2], [8], [10]) studied the 

convergence of statistical convergence. 

 

Mursaleen (see [12]) introduced the idea of 𝜆 -

statistical convergence in 2000. If the sequence 𝜆 is 

chosen, particularly, by 𝜆 = (1,2,3,4,… ) , then 𝜆 -

statistical convergence coincides with the statistical 

convergence. In 2001 Kostyrko et al. (see [11]) 

introduced the notion of ideal convergence of real 

sequences. If we consider the ideal of all subsets of ℕ 

having natural density zero, then the ideal 

convergence coincides with statistical convergence. 

Later Lahiri and Das (see [3]) extended the concept of 

ideal convergence for nets in topological spaces. 

Further some generalization of usual convergence 

were introduced and studied in (see [2], [14], [16]). 

In this paper, the extension of a certain type of 

Banach limit functional is shown which are 

designated as Banach statistical limit functionals. 
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With the help of Banach statistical limit functional 

we have introduced generalized almost statistical 

(GAS) convergence of bounded real sequences. GAS 

convergence is a generalization of almost convergence 

as well as statistical convergence. 

 

At the end, we also investigated some topological 

properties of the space of all GAS convergent 

sequences. The scope of this paper is :  

 

Section 2 : Deals with Banach limit functionals, 

almost convergence and statistical convergence. 

Section 3 : Deals with the main results of the paper. 

 

II. BANACH LIMIT FUNCTIONALS, ALMOST 

CONVERGENCE & STATISTICAL  CONVERGENCE 

 

The limit functional 𝑓  on the space 𝑐  of all 

convergent real sequences defined by  

𝑓(𝑥) = lim
𝑛→∞

𝑥𝑛 , 𝑥 ∈ 𝑐, can be extended to the space 

𝑙∞  of all bounded real sequences by Hahn-Banach 

Extension Theorem, where 𝑙∞  is the normed linear 

space with sup-norm defined by  

‖𝑥‖∞ = sup
𝑛∈ℕ
|𝑥𝑛| , ∀ 𝑥 ∈ 𝑙∞.  

Banach (see [13]) showed the existence of certain 

extensions which are called Banach limits defined as 

follows : 

Definition 2.1 

A functional 𝐵 ∶  𝑙∞ → ℝ is called Banach limit if it 

satisfies the following : 

(i) ‖𝐵‖ = 1, 

(ii) 𝐵|𝑐 = 𝑓, where 𝑓 is the limit functional on 𝑐, 

(iii) If 𝑥 ∈ 𝑙∞ with 𝑥𝑛 ≥ 0, ∀ 𝑛 ∈ ℕ,  

       then 𝐵(𝑥) ≥ 0, 

(iv) If 𝑥 ∈ 𝑙∞, then 𝐵(𝑥) = 𝐵(𝑆𝑥),  

       where 𝑆 is the shift operator defined by  

       𝑆((𝑥𝑛)𝑛=1
∞ ) = 𝑆((𝑥𝑛)𝑛=2

∞ ). 

The concept of almost convergence was introduced 

by Lorentz (see [4]) in 1948 by using Banach limit 

functionals. 

Definition 2.2 

For some 𝑥 ∈ 𝑙∞, if 𝐵(𝑥) is unique (i.e. invariant) for 

all Banach limit functionals 𝐵, then the sequence 𝑥 is 

called almost convergent to 𝐵(𝑥).  

Let 𝒜 ⊂ 𝑙∞ be the set of all almost convergent real 

sequences. Clearly 𝑐 ⊊ 𝒜. 

Definition 2.3 

Let 𝑃 ⊂ ℕ.  

If the limit 

𝛿(𝑃) = lim
𝑛→∞

|𝑃⋂{1,2,… , 𝑛}|

𝑛
 

exists, then 𝛿(𝑃)  is called the natural density or 

asymptotic density of 𝑃 in ℕ. 

Note: 

Any subset 𝑃 of ℕ may not have natural density as it 

depends totally on the existence of the limit. 

By using the concept of natural density, in 

1951, fast (see [5]), Steinhaus (see  [7]) introduced 

independently the notion of statistical convergence, 

which is another generalisation of usual convergence. 

Definition 2.4 

A sequence (𝑝𝑘)𝑘  of real numbers is called 

convergent statistically to ℓ ∈ ℝ  

if for any 𝜖 > 0, 𝛿({𝑘 ∈ ℕ ∶ |𝑝𝑘 − ℓ| > 𝜖}) = 0. 

We use the notation 𝑝𝑘
𝑠𝑡𝑎𝑡  
→   ∞ or 𝑠𝑡𝑎𝑡 lim

𝑛→∞
𝑝𝑛 = ℓ. 

Example 2.1 

The sequence (𝜆𝑛)𝑛 defined by  

𝜆𝑗 = {
𝑗     if 𝑗 = 𝑘2, 𝑘 ∈ ℕ  
0     otherwise             

 

is statistically convergent to 0. 

Lemma 2.1 

Let 𝐶, 𝐷 ⊂ ℕ.  

If 𝛿(𝐶), 𝛿(𝐷), 𝛿(𝐶 ∪ 𝐷) exists,  

Then  

max{𝛿(𝐶), 𝛿(𝐷)} ≤𝛿(𝐶 ∪ 𝐷) 

                             ≤ min{𝛿(𝐶) + 𝛿(𝐷), 1} 

Furthermore, if 𝛿(𝐶) = 𝛿(𝐷) = 0, then 𝛿(𝐶 ∪ 𝐷)  

exists and equals to 0. 

Lemma 2.2 

Let (𝑝𝑛)𝑛 be a real sequence.  

Then, 𝑝𝑛
𝑠𝑡𝑎𝑡  
→   ℓ  if and only if there exists some  
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𝐽 ⊂ ℕ with 𝐽 = {𝛼1 < 𝛼2 < ⋯ < 𝛼𝑛 < . . . }  

such that 𝛿(𝐽) = 1 and lim
𝑗→∞

𝑝𝛼𝑗 = ℓ. 

This lemma is well known. 

Lemma 2.3 

Let (𝑟𝑛)𝑛 be a statistically convergent real sequence  

and 𝑠𝑡𝑎𝑡 lim
𝑛→∞

𝑟𝑛 = ℓ.  

If (𝑠𝑛)𝑛 is defined by 𝑠𝑛 = 𝑟𝑛 − ℓ, ∀ 𝑛 ∈ ℕ,  

then (𝑠𝑛)𝑛 converges statistically to 0. 

Lemma 2.4 

Let  (𝑝𝑛)𝑛  be a statistically convergent real  

sequence.  

Then, the telescoping sequence of (𝑝𝑛)𝑛 is statistically 

convergent to 0  

i.e. 𝑠𝑡𝑎𝑡 lim
𝑛→∞

(𝑝𝑛 − 𝑝𝑛+1) = 0. 

Proof: 

Let 𝑠𝑡𝑎𝑡 lim
𝑛→∞

𝑝𝑛 = 𝑙 and 𝜖 > 0 be any real number.  

Now, for any 𝑛 ∈ ℕ,  

|𝑝𝑛+1 − 𝑝𝑛| ≤ |𝑝𝑛+1 − 𝑙| + |𝑝𝑛 − 𝑙| 

                       ≤
𝜖

2
+
𝜖

2
 

                       = 𝜖 

Using Contrapositive  

      |𝑝𝑛+1 − 𝑝𝑛| > 𝜖 

⟹ |𝑝𝑛+1 − 𝑙| >
𝜖

2
  or  |𝑝𝑛 − 𝑙| >

𝜖

2
 

⟹ {𝑛 ∈ ℕ ∶  |𝑝𝑛+1 − 𝑝𝑛| > 𝜖} 

⊂ {𝑛 ∈ ℕ ∶  |𝑝𝑛+1 − 𝑙| >
𝜖

2
}⋃ {𝑛 ∈ ℕ ∶  |𝑝𝑛 − 𝑙| >

𝜖

2
} 

⟹ 𝛿({𝑛 ∈ ℕ ∶  |𝑝𝑛+1 − 𝑝𝑛| > 𝜖}) = 0. 

⟹ 𝑠𝑡𝑎𝑡 lim
𝑛→∞

(𝑝𝑛 − 𝑝𝑛+1) = 0. 

Lemma 2.5 

Let (𝑥𝑛)𝑛 and (𝑦𝑛)𝑛 be two real sequences such that  

𝑥𝑛
𝑠𝑡𝑎𝑡  
→   𝑙  and 𝑦𝑘 = 𝑥𝑘  𝑎. 𝑎. 𝑘. 

Then, 𝑦𝑛
𝑠𝑡𝑎𝑡  
→   𝑙   

Proof :  

Let 𝐸 = {𝑘 ∈ ℕ ∶ 𝑦𝑘 ≠ 𝑥𝑘} and 𝜖 > 0 be any real  

number. 

Then 𝛿(𝐸) = 0.  

Now, {𝑛 ∈ ℕ ∶ |𝑦𝑛 − ℓ| > 𝜖} 

     ⊂ {𝑛 ∈ ℕ ∶ |𝑥𝑛 − ℓ| > 𝜖} ∪ 𝐸  

⟹ 𝛿({𝑛 ∈ ℕ ∶ |𝑦𝑛 − ℓ| > 𝜖}) = 0.  

Hence 𝑦𝑛
𝑠𝑡𝑎𝑡  
→   𝑙. 

Definition 2.5 

A family 𝐼 of subsets of ℕ is said to be an ideal of ℕ  

if 

(i) 𝐴 ∪ 𝐵 ∈ 𝐼 for each 𝐴, 𝐵 ∈ 𝐼 

(ii) 𝐴 ⊂ 𝐵 with 𝐵 ∈ 𝐼 implies 𝐴 ∈ 𝐼. 

Definition 2.6 

A real sequence (𝑧𝑘)𝑘 is said to be 𝐼-convergent to 𝑙  

if for any 𝜖 > 0, the set {𝑘 ∈ ℕ ∶ |𝑧𝑘 − 𝑙| > 𝜖} ∈ 𝐼. 

Lemma 2.6 

Let 𝑋 be a normed linear space and 𝑌 be a subspace  

of 𝑋.  

If 𝛼 ∈ 𝑋 − �̅� and  

𝜇 = 𝑑(𝛼, 𝑌)  = inf{𝑑(𝛼, 𝑦) ∶ 𝑦 ∈ 𝑌},  

then ∃ a bounded linear functional 𝑓 ∶ 𝑋 → ℝ  

such that 𝑓(𝛼) = 1, 𝑓(𝑦) = 0, ∀𝑦 ∈ 𝑌 with  

‖𝑓‖ = 𝜇−1. 

Also, Lorentz (see [4]) characterised the almost 

convergence given as follows. 

Lemma 2.7 

Let 𝑥 = (𝑥𝑛)𝑛 ∈ 𝑙∞.  

Then (𝑥𝑛)𝑛 is almost convergent to some ℓ if and  

only if  

lim
𝑘→∞

𝑥𝑝 + 𝑥𝑝+1 +⋯+ 𝑥𝑃+𝑘−1
𝑘

= ℓ 

holds for each 𝑝 ∈ ℕ. 

this lemma is well known. 

Example 2.2 

The divergent sequence (1, 0, 1, 0, … ) ∈ 𝑙∞ is  

almost convergent to 
1

2
 .  

But it is not statistically convergent. 

 

Example 2.3 

Consider a sequence 𝑥 = (𝑥𝑛)𝑛 in {0, 1} constructed  

as follows : 

𝑥 = (0,0,… ,0⏟    
100 copies

, 1,1, . . . ,1⏞    
10 copies

, … , … ,0⏟    
1002 copies

, 1,1, . . . ,1⏞    
102 copies

, 

            0,0,… ,0⏟    
1003 copies

, 1,1, . . . ,1⏞    
103 copies

, … ) 

Then, (𝑥𝑛)𝑛 is statistically convergent to 0. 

But it is not almost convergent. 

http://www.ijsrst.com/
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We now discuss the main results of the paper. 

 

III. MAIN RESULTS 

 

Salat (see [15]) showed that 𝑠𝑡 is a closed subspace  

of 𝑙∞.  

Since, 𝜙𝑛
𝑠𝑡𝑎𝑡  
→   𝑎, 𝜉𝑛

𝑠𝑡𝑎𝑡  
→   𝑏  

Then we have (i) 𝜙𝑛 + 𝜉𝑛
𝑠𝑡𝑎𝑡  
→   𝑎 + 𝑏  

                       (ii) 𝜆𝜉𝑛
𝑠𝑡𝑎𝑡  
→   𝜆𝑏,              

for any 𝜆 ∈ ℝ and 𝜙, 𝜉 ∈ 𝑠𝑡,  

Definition: A function 𝑔 ∶ 𝑠𝑡 → ℝ defined by  

𝑔(𝑥) = 𝑠𝑡𝑎𝑡 lim
𝑛→∞ 

𝑥𝑛 is a linear functional on 𝑠𝑡.  

We call this functional 𝑔 by statistical limit  

functional on 𝑠𝑡 

Theorem 3.1 

The linear functional 𝑔 ∶ 𝑠𝑡 → ℝ defined by  

𝑔(𝑥) = 𝑠𝑡𝑎𝑡 lim
𝑛→∞ 

𝑥𝑛 is a bounded with ‖𝑔‖ = 1. 

Proof: 

Let 𝑥 ∈ 𝑠𝑡 

|𝑔(𝑥)| = |𝑠𝑡𝑎𝑡 lim
𝑛→∞ 

𝑥𝑛| 

             ≤ |sup
𝑛∈ℕ

𝑥𝑛| 

             ≤ sup
𝑛∈ℕ
|𝑥𝑛| 

             = ‖𝑥‖∞ 

⟹ 
|𝑔(𝑥)|

‖𝑥‖∞
≤ 1.  

⟹ ‖𝑔‖ ≤ 1.   

Again, consider 𝑦 = (𝜆, 𝜆, 𝜆, … ) ∈ 𝑠𝑡. 

Then 𝑔(𝑦) = 𝜆 = ‖𝑦‖∞. 

Thus ∃ 𝑦 ∈ 𝑠𝑡 such that 
|𝑔(𝑥)|

‖𝑦‖∞
= 1⟹ ‖𝑔‖ > 1.  

Hence ‖𝑔‖ = 1. 

Thus, by Hahn-Banach Theorem 𝑔 can be extended  

to 𝑙∞ preserving norm  

that is  ∃  𝐿 ∈ (𝑙∞)
∗ such that  𝐿|𝑠𝑡 = 𝑔 and  

‖𝐿‖ = ‖𝑔‖, 

where (𝑙∞)
∗  is the continuous dual (dual space)  

of 𝑙∞. 

We now state and prove the main result of the paper. 

In fact we prove  

 

Existence of Banach Statistical Limit Functional 

Theorem 3.2 

There exists a functional ℱ ∶ 𝑙∞ → ℝ is named as  

Banach statistical limit functional satisfying the  

following : 

(i) ‖ℱ‖ = 1 and 𝑠𝑡0 ⊂ kerℱ 

(ii)  ℱ|𝑠𝑡 = 𝑔, where 𝑔 is the statistical limit  

      functional on 𝑠𝑡, 

(iii) If 𝑠 ∈ 𝑙∞ with𝑠𝑛 ≥ 0, then ℱ(𝑠) ≥ 0, 

(iv) If 𝑥 ∈ 𝑙∞, then ℱ(𝑥) = ℱ(𝑇𝑥),  

where 𝑇 ∶  𝑙∞ → 𝑙∞ is a map with  

(𝑇𝑥)𝑘 = (𝑆𝑥)𝑘 𝑎. 𝑎. 𝑘  

for each 𝑥 ∈ 𝑙∞ and 𝑆 is the shift operator defined by  

𝑆((𝑥𝑛)𝑛=1
∞ ) = (𝑥𝑛)𝑛=2

∞ . 

Proof:  

(i) Let 𝐺 = {𝑥 − 𝑆𝑥 ∶ 𝑥 ∈ 𝑙∞ and  

𝑁 = {𝑦 ∈ 𝑙∞ ∶ 𝑦𝑘 = 𝑥𝑘  𝑎. 𝑎. 𝑘, 𝑥 ∈  𝐺}.  

So 𝐺 ⊂ 𝑁 ⊂ 𝑙∞. 

Clearly 𝐺 is a subspace of 𝑙∞.  

Let 𝑝, 𝑞 ∈ 𝑁 and any 𝜇, 𝜆 ∈ ℝ.  

Then ∃ 𝑥, 𝑦 ∈ 𝑙∞ such that 𝑝𝑛 = (𝑥 − 𝑆𝑥)𝑛 𝑎. 𝑎. 𝑛  

and 𝑞𝑛 = (𝑦 − 𝑆𝑦)𝑛 𝑎. 𝑎. 𝑛.  

Since, 𝐺 is a subspace, 𝜇(𝑥 − 𝑆𝑥) + 𝜆(𝑦 − 𝑆𝑦) ∈ 𝐺.  

So by Lemma 2.1, we have 

     (𝜇𝑝 + 𝜆𝑞)𝑛 

= (𝜇(𝑥 − 𝑆𝑥) + 𝜆(𝑦 − 𝑆𝑦))
𝑛
𝑎. 𝑎. 𝑛  

⟹ 𝜇𝑝 + 𝜆𝑞 ∈ 𝑁. 

Therefore 𝑁 is a subspace of 𝑙∞. 

Now, we claim that 𝑑(1,𝑁) = 1,  

where 1 = (1,1,1,… ).  

For, 0 ∈ 𝐺 ⟹ 𝑑(1, 𝐺) ≤ 1. 

Since, 𝐺 ⊂ 𝑁, 𝑑(1, 𝐺) ≤ 1.  

Let 𝑝 ∈ 𝑁.  

Then 𝑝𝑛 = (𝑏 − 𝑆𝑏)𝑛 𝑎. 𝑎. 𝑛 for some 𝑏 ∈ 𝑙∞. 

If       𝑝𝑛 ≤ 0   for some 𝑛 ∈ ℕ 

then ‖1 − 𝑝𝑛‖∞ = sup
𝑛∈ℕ
|1 − 𝑝𝑛| ≥ 1.  

Again, if 𝑝𝑛 ≥ 0, ∀ 𝑛 ∈ ℕ 

then (𝑏 − 𝑆𝑏)𝑛 ≥ 0 𝑎. 𝑎. 𝑛 

 ⟹ 𝑏𝑛 ≥ 𝑏𝑛+1 𝑎. 𝑎. 𝑛.  

Thus (𝑏𝑛)𝑛 has a subspace (𝑏𝑛𝑘)𝑘
 such that  

𝑏𝑛𝑘 ≥ 𝑏𝑛𝑘+1∀ 𝑘 ∈ ℕ with 𝛿({𝑛𝑘 ∶ 𝑘 ∈ ℕ}) = 1.  
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Since (𝑏𝑛𝑘)𝑘
 is monotonically decreasing bounded 

sequence,  

⟹ lim
𝑛 → ∞

𝑏𝑛𝑘 = 𝑙 (say) exists.   

⟹ 𝑠𝑡𝑎𝑡 lim
𝑛 → ∞

𝑏𝑛𝑘 = 𝑙. by Lemma 2.2  

⟹ 𝑠𝑡𝑎𝑡 lim
𝑛 → ∞

(𝑏𝑛 − 𝑏𝑛+1) = 0 by Lemma 2.4 

⟹ 𝑠𝑡𝑎𝑡 lim
𝑛 → ∞

𝑏𝑛 = 𝑙  

⟹ 𝑠𝑡𝑎𝑡 lim
𝑛 → ∞

𝑝𝑛 = 0 by Lemma 2.5  

Hence using Lemma 2.2, there is a subsequence  

(𝑝𝑛𝑗)𝑗
 of (𝑝𝑛)𝑛 

Such that 𝛿({𝑛𝑗 ∶ 𝑗 ∈ ℕ}) = 1 with lim
𝑗→∞

𝑝𝑛𝑗 = 0  

So  ‖1 − 𝑝‖∞ = sup
𝑛∈ℕ
|1 − 𝑝𝑛| ≥ sup

𝑗∈ℕ
|1 − 𝑝𝑛𝑗| = 1 

Thus, for any 𝑝 ∈ 𝑁, we have 

⟹ ‖1− 𝑝‖∞ ≥ 1 

⟹ 𝑑(1,𝑁) ≥ 1   

Hence 𝑑(1,𝑁) = 1 

Clearly. 1 ∉ �̅�. 

By the Proposition 2.1 there exists a functional  

ℱ ∶ 𝑙∞ → ℝ  

such that ℱ(1) = 1, ℱ(0) = 0, ∀ 𝑦 ∈ 𝑁 with  

‖ℱ‖ = 𝑑(1,𝑁)−1 = 1         (a) 

Let 𝑠𝑡0 be the collection of all bounded sequences  

which converge statistically to 0. 

Claim : we have to show that 𝑠𝑡0 ⊂ kerℱ 

For, let 𝜉 ∈ 𝑠𝑡0 and 𝜖 > 0 be any real number. 

Then 𝜉 ∈ 𝑙∞ and 𝜉𝑛
𝑠𝑡𝑎𝑡
→  0 

i.e. if 𝑈𝜖 = {𝑘 ∈ ℕ ∶ |𝜉𝑘| > 𝜖  then 𝛿(𝑈𝜖) = 0  

Again  ℱ(𝑦) = 0, ∀ 𝑦 ∈ 𝑁  

⟹ℱ(𝑦) = 0, 𝑦𝑘 = (𝑧 − 𝑆𝑧)𝑘  𝑎. 𝑎. 𝑘, ∀ 𝑧 ∈ 𝐺  

So by the linearity of ℱ we can write ℱ(𝑥) = ℱ(𝑇𝑥)  

where 𝑇 ∶  𝑙∞ → 𝑙∞ is any map  

such that 𝜎𝑇(𝑧) = {𝑗 ∈ ℕ ∶ (𝑇𝑧)𝑗 ≠ (𝑆𝑧)𝑗} and  

𝛿[𝜎𝑇(𝑧)] = 0, ∀ 𝑧 ∈ 𝑙∞ 

Choosing 𝜎𝑇(𝑥) = 𝑈𝜖  ∀ 𝑥 ∈ 𝑙∞,  

we consider the map 𝑇 ∶ 𝑙∞ → 𝑙∞ defined by  

𝑇𝑥 = 𝑟, ∀ 𝑥 ∈ 𝑙∞,  

where 𝑟𝑘 = {
0,       𝑖𝑓 𝑘 + 1 ∈ 𝑈𝜖
𝑥𝑘+1,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Then ℱ(𝜉) = ℱ(𝑇𝜉)  

⟹ |ℱ(𝜉)| = |ℱ(𝑇𝜉)| ≤ ‖ℱ‖‖𝑇𝜉‖∞ 

                  = sup{|(𝑇𝜉)𝑘| ∶ 𝑘 ∈ ℕ ≤ 𝜖 

Since 𝜖 > 0 is arbitrary, ℱ(𝜉) = 0 

Thus 𝑠𝑡0 ⊂ kerℱ          (b) 

Hence the Theorem 3.2 (i) 

(ii) Next we claim that, ℱ|𝑠𝑡 = 𝑔 

For, let 𝑥 ∈ 𝑠𝑡 i.e. 𝑥𝑛
𝑠𝑡𝑎𝑡
→  Ω (say) 

Then the sequence 𝑒 defined by  

𝑒𝑗 = 𝑥𝑗 − Ω, ∀ 𝑗 ∈ ℕ 

Now 𝑥 − Ω1 = 𝑒 ∈ 𝑠𝑡0 by Lemma 2.3  

⟹ 𝑒 ∈ kerℱ 

Now ℱ(𝑥) = ℱ(𝑥 − Ω1) + ℱ(Ω1) 

                  = ℱ(𝑒) + Ω + ℱ(1) 

                  = Ωℱ(1) 

                  = Ω 

                  = 𝑠𝑡𝑎𝑡 lim
𝑛→∞

𝑥𝑛 

                  = 𝑔(𝑥) 

Thus ℱ|𝑠𝑡 = 𝑔 

Hence proved. 

Claim (iii) If 𝑠 ∈ 𝑙∞ with𝑠𝑛 ≥ 0, then ℱ(𝑠) ≥ 0. 

Proof :   

If 𝑢, 𝑣 ∈ 𝑙∞ with 𝑢𝑘 = 𝑣𝑘  𝑎. 𝑎. 𝑘,   

then ℱ(𝑢) = ℱ(𝑣)  

For, let 𝜔𝑛 = 𝑢𝑛 − 𝑣𝑛, ∀ 𝑛 ∈ ℕ  

Let 𝐾 = {𝑘 ∶ 𝜔𝑘 ≠ 0}  

Then 𝛿(𝐾) = 0 

Now consider the map 𝑇 ∶  𝑙∞ → 𝑙∞ with  

𝜎𝑇(𝜔) = 𝐾 defined by 𝑇𝑎 = 𝑏, ∀ 𝑎 ∈ 𝑙∞, 

where 𝑏𝑘 = {
0, 𝑖𝑓 𝑘 + 1 ∈ 𝐾
𝑎𝑘+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Therefore 𝑇𝜔 = 0  

Now, ℱ(𝑢) − ℱ(𝑣) = ℱ(𝑢 − 𝑣) 

                                 = ℱ(𝜔) 

                                 = ℱ(𝑇𝜔) 

                                 = ℱ(0) = 0 

Thus ℱ(𝑢) = ℱ(𝑣) 

If possible, suppose that there exists 𝑧 ∈ 𝑙∞ with  

𝑧𝑛 ≥ 0 a. a. n  

Such that ℱ(𝑧) < 0 

Consider 𝑦 ∈ 𝑙∞ defined by 𝑦𝑛 =
𝑧𝑛

‖𝑧‖∞
  

Clearly 𝑦𝑛 ≥ 0  𝑎. 𝑎. 𝑛 and ℱ(𝑦) < 0 

Again consider 𝑥 ∈ 𝑙∞ defined by  
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𝑥𝑘 = {
0, 𝑖𝑓 𝑦𝑘 < 0
𝑦𝑘 , 𝑖𝑓 𝑦𝑘 ≥ 0

 

Then, 𝑥𝑛 = 𝑦𝑛, 𝑎. 𝑎. 𝑛 and 0 ≤ 𝑥𝑛 ≤ 1, ∀ 𝑛 ∈ ℕ  

Therefore ℱ(𝑥) = ℱ(𝑦) < 0 and  

‖1 − 𝑥‖∞ = sup
n∈ℕ
|1 − 𝑥𝑛| ≤ 1 

Again ℱ(1 − 𝑥) = ℱ(1) − ℱ(𝑥) 

                           = 1 − ℱ(𝑥) > 1 

Thus we get  

1 < |ℱ(1 − 𝑥)| < ‖ℱ‖‖1 − 𝑥‖∞ 

                           = ‖1 − 𝑥‖∞ ≤ 1  

which is a contradiction.  

Hence, if 𝑠 ∈ 𝑙∞ with 𝑠𝑘 ≥ 0  𝑎. 𝑎. 𝑘 

then ℱ(𝑠) ≥ 0 

This completes the proof. 

The proof of the next part is simple. 

Corollary 3.1 

Every Banach statistical limit functional is a Banach  

limit functional on 𝑙∞. 

Corollary 3.2 

Let ℱ be any Banach statistical limit functional  

on 𝑙∞.  

If 𝑢, 𝑣 ∈ 𝑙∞ with 𝑢𝑘 = 𝑣𝑘  𝑎. 𝑎. 𝑘,  

then ℱ(𝑢) = ℱ(𝑣). 

Now by using Banach statistical limit functional we 

introduce a new type of convergence called 

generalized almost statistical convergence (GAS 

convergence) defined as follows :  

Definition 3.1 

Let 𝑥 ∈ 𝑙∞.  

Then 𝑥 is said to be generalized almost statistically  

convergent to 𝜆 if ℱ(𝑥) = 𝜆 for all Banach  

statistical limit functionals ℱ 

i.e. if ℱ(𝑥) is invariant (unique) for each Banach  

statistical limit functionals ℱ on 𝑙∞. 

Let 𝑆 be the set of all GAS convergent real  

sequences.  

Then the following result is easily obtained from the  

Theorem 3.2 and Definition 3.1. 

Corollary 3.3 

Every statistically convergent sequence is GAS  

convergent with the same limit i.e. 𝑠𝑡 ⊂ 𝑆. 

The converse is not true (see Example 3.1).  

Clearly 𝑠𝑡 ⊊ 𝑆. 

From the Definition 3.1 it follows that every  

bounded statistically convergent sequence is  

GAS convergent with the same limit. 

Lemma 3.1 

Every almost convergent real sequence in GAS  

convergent with the same limit i.e. 𝒜 ⊂ 𝑆.  

Proof: 

Suppose 𝑟 = (𝑟𝑖)𝑖 ∈ 𝑙∞ is an almost convergent real  

sequence with limit 𝑘.  

Then for any Banach limit functional 𝐵 ∶ 𝑙∞ → ℝ we  

have 𝐵(𝑟) = 𝑘.  

We can easily say that ℱ(𝑟) = 𝑘  

for any Banach statistical limit functional ℱ  by 

Corollary 3.1 

Thus (𝑟𝑛)𝑛 is generalized almost statistically  

convergent to 𝑘. 

The converse is not true. 

Because the sequence 𝑥 = (𝑥𝑛)𝑛 is not almost  

convergent.  

But it is statistically convergent.  

⇒ 𝑥 ∈ 𝑆  

⇒ 𝒜 ⊊ 𝑆 

 

Example 3.1 

Consider the real bounded sequence 𝑥 = (𝑥𝑛)𝑛  

defined by 

𝑥𝑘 = {

5   if 𝑘 is a perfect square number           
0   if 𝑘 is even and not a perfect square
1   if 𝑘 is odd and not a perfect square  

  

i.e.  

(𝑥𝑛)𝑛
= (5,0,1,5,1,0,1,0,5,0,1,0,1,0,1,5,1,0,1,0,1,0,1,0,5,0,… )  

Clearly 𝑥 is not convergent in usual sense.  

Even 𝑥 is not convergent statistically.  

But 𝑥 is GAS convergent to 
1

2
.  

For let 𝑆 = {𝑛2 ∶ 𝑛 ∈ ℕ}.  

Now consider the map 𝑇 ∶ 𝑙∞ → 𝑙∞ with  

𝜎𝑇(𝑥) = 𝑆 defined by 𝑇𝑧 = 𝑦, ∀ 𝑧 ∈ 𝑙∞ , where  
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𝑦𝑘 = {
𝑧𝑘+1   if 𝑘 + 1 ∉ 𝑆                           
0         if 𝑘 + 1 ∈ 𝑆 and 𝑘 is odd  
1          if 𝑘 + 1 ∈ 𝑆 and 𝑘 is even

 

Then 𝑇𝑥 = (0,1,0,1,0,1,… ).  

Let ℱ be any Banach statistical limit functional.  

Since 𝑢, 𝑣 ∈ 𝑙∞ with 𝑢𝑘 = 𝑣𝑘  𝑎. 𝑎. 𝑘   

implies ℱ(𝑢) = ℱ(𝑣) 

we have ℱ(𝑥) = ℱ(1,0,1,0,1,0,… ). 

Now  

ℱ(𝑥) = ℱ(𝑇𝑥) 

         = ℱ(1,0,1,0,1,0,… ) 

          = ℱ((1,1,1,1,1,1, … ) − (1,0,1,0,1,0,… )) 

          = ℱ(1,1,1,1,1,1,… ) − (1,0,1,0,1,0,… ) 

          = 1 − ℱ(𝑥) 

⇒ ℱ(𝑥) =
1

2
  

 

The interesting example shows that there exists a  

GAS convergent sequence which is neither  

almost convergent nor statistically convergent.  

i.e. 𝒔𝒕 ⋃𝓐 ⊊ 𝑺. 

Example 3.2  

Consider the sequence 𝜉 = (𝜉𝑛)𝑛 defined as follows 

𝜉

= (1,0,1,0,… ⏟      
100 terms

, 1,1,1,… ,1⏞      
10 terms

, 1,0,1,0,…⏟      
1002 terms

, 1,1,1, … ,1⏞      
102 terms

, 1,0,1,0,…⏟      
1003 terms

, 1,1, … ,1⏞    
103 terms

, … . ) 

It is easy that 𝜉  is neither a statistically convergent  

nor an almost convergent sequence. 

But  𝜉 is GAS convergent.  

For let 𝐸 = ⋃ (𝑏𝑖 − 10
𝑖, 𝑏𝑖] ∩ 2ℕ

∞
𝑖=1   with  

𝑏𝑖 = ∑ (100𝑗 + 10𝑗)𝑖
𝑗=1   for each 𝑖 ∈ ℕ.  

Let 𝑇 ∶ 𝑙∞ → 𝑙∞  defined by 𝑇𝑥 = 𝑧  with 

𝑧𝑘 = {
𝑥𝑘+1,         if 𝑘 + 1 ∉ 𝐸  
0,               otherwise      

 

Then 𝑧 = (0,1,0,1,0,… ).  

Since 𝛿(𝐸) = 0, 𝑧𝑘 = (𝑆𝑥)𝑘 𝑎. 𝑎. 𝑘.  

Therefore ℱ(𝑥) = ℱ(𝑇𝑥) 

                           = ℱ(0,1,0,1,0,… ) 

                           = ℱ(1,0,1,0,… ) 

                               =
1

2
  

Theorem 3.3 

GAS convergence cannot be characterized by ideal  

convergence for proper ideals of ℕ 

Proof. 

If possible suppose that GAS convergence  

coincides with ideal convergence for some proper  

ideal 𝐼 of ℕ.  

Since 𝜉 = (1,0,1,0, . . . . ) is almost convergent to 
1

2
 

∴  𝜉 is GAS convergent to 
1

2
.  

Hence For any  𝜖 > 0,  

𝐴𝜖 = {𝑘 ∈ ℕ ∶ |𝜉𝑘 −
1

2
| ≥ 𝜖} ∈ 𝐼  

But 𝐴1
2

= ℕ ∈ 𝐼 

which contradicts that 𝐼 is a proper ideal of ℕ. 

Hence the theorem. 

Topological properties of the space of all GAS  

convergent sequences 

Lemma 3.2 

Some topological properties of space  

𝑆 = {𝑠(𝑛)| 𝑛 ∈ ℕ} of all GAS convergent sequences. 

(i) 𝑆 is closed  

(ii) 𝑆 is non-separable in 𝑙∞ 

(iii) 𝑆 is first countable but not second countable. 

(iv) 𝑆 is not Lindelof and not compact. 

Proof :  

(i) 𝑆 is closed. For let 𝑠 ∈ 𝑆.  

Then by the sequence lemma,  

there exists a sequence (𝑠(𝑛))
𝑛∈ℕ

 in 𝑆  

such that lim
𝑛→∞

𝑠(𝑛) = 𝑠.  

Let 𝜌, 𝜏 be any two Banach statistical limit  

functional.  

Since 𝜌, 𝜏 are continuous 

𝜌(𝑠) = 𝜌 ( lim
𝑛→∞

𝑠(𝑛)) 

        = lim
𝑛→∞

(𝜌(𝑠(𝑛))) 

        = lim
𝑛→∞

(𝜏(𝑠(𝑛))) 

        = 𝜏 ( lim
𝑛→∞

𝑠(𝑛)) 

        = 𝜏(𝑠).  

Hence 𝑆 is closed. 

(ii) 𝑆 is non-separable.  

For consider Λ ⊂ 𝑙∞ defined as follows 
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Λ = {𝑥 → 𝑙∞ ∶ 𝑥𝑘

= {
0 𝑜𝑟 1     𝑖𝑓 𝑘 𝑖𝑠 𝑎 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑠𝑞𝑢𝑎𝑟𝑒
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

} 

Clearly Λ is an uncountable subset of 𝒜 ⊂ 𝑆  

which implies that 𝑆 is uncountable.  

Now for any distinct  

𝑢, 𝑣 ∈ Λ, 𝑑(𝑢, 𝑣) = ‖𝑢 − 𝑣‖∞ = 1.  

Thus Λ is an uncountable discrete subset of 𝑆.  

Let 𝐷 be any dense set in 𝑆 i.e. �̅� = 𝑆.  

Let us consider any 𝑠, 𝑡 ∈ Λ with 𝑠 ≠ 𝑡. 

Then 𝑠, 𝑡 ∈ 𝑆 = �̅�.  

Then the disjoint open balls 𝐵𝑑 (𝑠,
1

2
) and 𝐵𝑑 (𝑡,

1

2
)  

must have non-empty intersections with 𝐷 which  

implies that there are two distinct elements of 𝐷.  

Since Λ is uncountable  

So 𝐷 is also uncountable.  

Thus 𝑆 does not contain any countable dense subset 

i.e. 𝑆 is non-separable in 𝑙∞. 

Proof of (iii) and (iv) are very easy since  

(iii) 𝑆 is not second countable due to its non- 

separability. 

(iv) Since 𝑆 is metrizable and not second countable. 

So 𝑆 is non-Lindelof and non-compact. 

This completes the proof.  
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